computer, device for processing, storing, and displaying information.
Computer once meant a person who did computations, but now the term almost universally refers to automated electronic machinery. The first section of this article focuses on modern digital electronic computers and their design, constituent parts, and applications. The second section covers the history of computing. For details on computer architecture, software, and theory, seecomputer science.
Britannica’s 21st-Century
Technology Timeline
Computing basics
The first computers were used primarily for numerical calculations. However, as any information can be numerically encoded, people soon realized that computers are capable of general-purpose information processing. Their capacity to handle large amounts of data has extended the range and accuracy of weather forecasting. Their speed has allowed them to make decisions about routing telephone connections through a network and to control mechanical systems such as automobiles, nuclear reactors, and robotic surgical tools. They are also cheap enough to be embedded in everyday appliances and to make clothes dryers and rice cookers “smart.” Computers have allowed us to pose and answer questions that were difficult to pursue in the past. These questions might be about DNA sequences in genes, patterns of activity in a consumer market, or all the uses of a word in texts that have been stored in a database. Increasingly, computers can also learn and adapt as they operate by using processes such as machine learning.
Computers also have limitations, some of which are theoretical. For example, there are undecidable propositions whose truth cannot be determined within a given set of rules, such as the logical structure of a computer. Because no universal algorithmic method can exist to identify such propositions, a computer asked to obtain the truth of such a proposition will (unless forcibly interrupted) continue indefinitely—a condition known as the “halting problem.” (SeeTuring machine.) Other limitations reflect current technology. For example, although computers have progressed greatly in terms of processing data and using artificial intelligencealgorithms, they are limited by their incapacity to think in a more holistic fashion. Computers may imitate humans—quite effectively, even—but imitation may not replace the human element in social interaction. Ethical concerns also limit computers, because computers rely on data, rather than a moral compass or human conscience, to make decisions.
Analog computers use continuous physical magnitudes to represent quantitative information. At first they represented quantities with mechanical components (seedifferential analyzer and integrator), but after World War II voltages were used; by the 1960s digital computers had largely replaced them. Nonetheless, analog computers, and some hybrid digital-analog systems, continued in use through the 1960s in tasks such as aircraft and spaceflight simulation.
One advantage of analog computation is that it may be relatively simple to design and build an analog computer to solve a single problem. Another advantage is that analog computers can frequently represent and solve a problem in “real time”; that is, the computation proceeds at the same rate as the system being modeled by it. Their main disadvantages are that analog representations are limited in precision—typically a few decimal places but fewer in complex mechanisms—and general-purpose devices are expensive and not easily programmed.
In contrast to analog computers, digital computers represent information in discrete form, generally as sequences of 0s and 1s (binary digits, or bits). The modern era of digital computers began in the late 1930s and early 1940s in the United States, Britain, and Germany. The first devices used switches operated by electromagnets (relays). Their programs were stored on punched paper tape or cards, and they had limited internal data storage. For historical developments, see the section Invention of the modern computer.
During the 1950s and ’60s, Unisys (maker of the UNIVAC computer), International Business Machines Corporation (IBM), and other companies made large, expensive computers of increasing power. They were used by major corporations and government research laboratories, typically as the sole computer in the organization. In 1959 the IBM 1401 computer rented for $8,000 per month (early IBM machines were almost always leased rather than sold), and in 1964 the largest IBM S/360 computer cost several million dollars.
These computers came to be called mainframes, though the term did not become common until smaller computers were built. Mainframe computers were characterized by having (for their time) large storage capabilities, fast components, and powerful computational abilities. They were highly reliable, and, because they frequently served vital needs in an organization, they were sometimes designed with redundant components that let them survive partial failures. Because they were complex systems, they were operated by a staff of systems programmers, who alone had access to the computer. Other users submitted “batch jobs” to be run one at a time on the mainframe.
Such systems remain important today, though they are no longer the sole, or even primary, central computing resource of an organization, which will typically have hundreds or thousands of personal computers (PCs). Mainframes now provide high-capacity data storage for Internet servers, or, through time-sharing techniques, they allow hundreds or thousands of users to run programs simultaneously. Because of their current roles, these computers are now called servers rather than mainframes.
The most powerful computers of the day have typically been called supercomputers. They have historically been very expensive and their use limited to high-priority computations for government-sponsored research, such as nuclear simulations and weather modeling. Today many of the computational techniques of early supercomputers are in common use in PCs. On the other hand, the design of costly, special-purpose processors for supercomputers has been replaced by the use of large arrays of commodity processors (from several dozen to over 8,000) operating in parallel over a high-speed communications network.
Although minicomputers date to the early 1950s, the term was introduced in the mid-1960s. Relatively small and inexpensive, minicomputers were typically used in a single department of an organization and often dedicated to one task or shared by a small group. Minicomputers generally had limited computational power, but they had excellent compatibility with various laboratory and industrial devices for collecting and inputting data.
One of the most important manufacturers of minicomputers was Digital Equipment Corporation (DEC) with its Programmed Data Processor (PDP). In 1960 DEC’s PDP-1 sold for $120,000. Five years later its PDP-8 cost $18,000 and became the first widely used minicomputer, with more than 50,000 sold. The DEC PDP-11, introduced in 1970, came in a variety of models, small and cheap enough to control a single manufacturing process and large enough for shared use in university computer centers; more than 650,000 were sold. However, the microcomputer overtook this market in the 1980s.
A microcomputer is a small computer built around a microprocessorintegrated circuit, or chip. Whereas the early minicomputers replaced vacuum tubes with discrete transistors, microcomputers (and later minicomputers as well) used microprocessors that integrated thousands or millions of transistors on a single chip. In 1971 the Intel Corporation produced the first microprocessor, the Intel 4004, which was powerful enough to function as a computer although it was produced for use in a Japanese-made calculator. In 1975 the first personal computer, the Altair, used a successor chip, the Intel 8080 microprocessor. Like minicomputers, early microcomputers had relatively limited storage and data-handling capabilities, but these have grown as storage technology has improved alongside processing power.
In the 1980s it was common to distinguish between microprocessor-based scientific workstations and personal computers. The former used the most powerful microprocessors available and had high-performance color graphics capabilities costing thousands of dollars. They were used by scientists for computation and data visualization and by engineers for computer-aided engineering. Today the distinction between workstation and PC has virtually vanished, with PCs having the power and display capability of workstations.
Laptop computer
The first true laptop computer marketed to consumers was the Osborne 1, which became available in April 1981. A laptop usually features a “clamshell” design, with a screen located on the upper lid and a keyboard on the lower lid. Such computers are powered by a battery, which can be recharged with alternating current (AC) power chargers. The 1991 PowerBook, created by Apple, was a design milestone, featuring a trackball for navigation and palm rests; a 1994 model was the first laptop to feature a touchpad and an Ethernet networking port. The popularity of the laptop continued to increase in the 1990s, and by the early 2000s laptops were earning more revenue than desktop models. They remain the most popular computers on the market and have outsold desktop computers and tablets since 2018.
Another class of computer is the embedded processor. These are small computers that use simple microprocessors to control electrical and mechanical functions. They generally do not have to do elaborate computations or be extremely fast, nor do they have to have great “input-output” capability, and so they can be inexpensive. Embedded processors help to control aircraft and industrial automation, and they are common in automobiles and in both large and small household appliances. One particular type, the digital signal processor (DSP), has become as prevalent as the microprocessor. DSPs are used in wireless telephones, digital telephone and cable modems, and some stereo equipment.
The physical elements of a computer, its hardware, are generally divided into the central processing unit (CPU), main memory (or random-access memory, RAM), and peripherals. The last class encompasses all sorts of input and output (I/O) devices: keyboard, display monitor, printer, disk drives, network connections, scanners, and more.
The CPU provides the circuits that implement the computer’s instruction set—its machine language. It is composed of an arithmetic-logic unit (ALU) and control circuits. The ALU carries out basic arithmetic and logic operations, and the control section determines the sequence of operations, including branch instructions that transfer control from one part of a program to another. Although the main memory was once considered part of the CPU, today it is regarded as separate. The boundaries shift, however, and CPU chips now also contain some high-speed cache memory where data and instructions are temporarily stored for fast access.
The earliest forms of computer main memory were mercury delay lines, which were tubes of mercury that stored data as ultrasonic waves, and cathode-ray tubes, which stored data as charges on the tubes’ screens. The magnetic drum, invented about 1948, used an iron oxide coating on a rotating drum to store data and programs as magnetic patterns.
Secondary memory on a computer is storage for data and programs not in use at the moment. In addition to punched cards and paper tape, early computers also used magnetic tape for secondary storage. Tape is cheap, either on large reels or in small cassettes, but has the disadvantage that it must be read or written sequentially from one end to the other.
Computer peripherals are devices used to input information and instructions into a computer for storage or processing and to output the processed data. In addition, devices that enable the transmission and reception of data between computers are often classified as peripherals.
A plethora of devices falls into the category of input peripheral. Typical examples include keyboards, touchpads, mice, trackballs, joysticks, digital tablets, and scanners
Printers are a common example of output devices. New multifunction peripherals that integrate printing, scanning, and copying into a single device are also popular. Computer monitors are sometimes treated as peripherals. High-fidelity sound systems are another example of output devices often classified as computer peripherals. Manufacturers have announced devices that provide tactile feedback to the user—“force feedback” joysticks, for example. This highlights the complexity of classifying peripherals—a joystick with force feedback is truly both an input and an output peripheral.
Communication devices
One communication device is the common telephone modem (from modulator/demodulator). Modems modulate, or transform, a computer’s digital message into an analog signal for transmission over standard telephone networks, and they demodulate the analog signal back into a digital message on reception. In practice, telephone network components limit analog data transmission to about 48 kilobits per second
Peripheral interfaces
A variety of techniques have been employed in the design of interfaces to link computers and peripherals. An interface of this nature is often termed a bus. This nomenclature derives from the presence of many paths of electrical communication (e.g., wires) bundled or joined together in a single device.
Before integrated circuits (ICs) were invented, computers used circuits of individual transistors and other electrical components—resistors, capacitors, and diodes—soldered to a circuit board.
Design
Today IC design starts with a circuit description written in a hardware-specification language (like a programming language) or specified graphically with a digital design program. Computer simulation programs then test the design before it is approved. Another program translates the basic circuit layout into a multilayer network of electronic elements and wires.
Fabrication
The IC itself is formed on a silicon wafer cut from a cylinder of pure silicon—now commonly 200–300 mm (8–12 inches) in diameter. Since more chips can be cut from a larger wafer, the material unit cost of a chip goes down with increasing wafer size
Power consumption
The increasing speed and density of elements on chips have led to problems of powerconsumption and dissipation. Central processing units now typically dissipate about 50 watts of power—as much heat per square inch as an electric stove element generates—and require “heat sinks” and cooling fans or even water cooling systems
Future CPU designs
Since the early 1990s, researchers have discussed two speculative but intriguing new approaches to computation—quantum computing and molecular (DNA) computing. Each offers the prospect of highly parallel computation and a way around the approaching physical constraints to Moore’s law.
In 1994 Leonard Adleman, a mathematician at the University of Southern California, demonstrated the first DNA computer by solving a simple example of what is known as the traveling salesman problem. A traveling salesman problem—or, more generally, certain types of network problems in graph theory—asks for a route (or the shortest route) that begins at a certain city, or “node,” and travels to each of the other nodes exactly once.
Operating systems manage a computer’s resources—memory, peripheral devices, and even CPU access—and provide a battery of services to the user’s programs. UNIX, first developed for minicomputers and now widely used on both PCs and mainframes, is one example; Linux (a version of UNIX), Microsoft Corporation’s Windows XP, and Apple Computer’s OS X are others.
Wide area networks (WANs) span cities, countries, and the globe, generally using telephone lines and satellite links. The Internet connects multiple WANs; as its name suggests, it is a network of networks. Its success stems from early support by the U.S. Department of Defense, which developed its precursor, ARPANET, to let researchers communicate readily and share computer resources. Its success is also due to its flexible communication technique. The emergence of the Internet in the 1990s as not only a communication medium but also one of the principal focuses of computer use was one of the most significant developments in computing in that era. For more on the history and technical details of Internet communication protocols, seeInternet.
Software denotes programs that run on computers. John Tukey, a statistician at Princeton University and Bell Laboratories, is generally credited with introducing the term in 1958 (as well as coining the word bit for binary digit). Initially software referred primarily to what is now called system software—an operating system and the utility programs that come with it, such as those to compile (translate) programs into machine code and load them for execution. This software came with a computer when it was bought or leased. In 1969 IBM decided to “unbundle” its software and sell it separately, and software soon became a major income source for manufacturers as well as for dedicated software firms.
History at your fingertips – Sign up here to see what happened On This Day, every day in your inbox!
By signing up for this email, you are agreeing to news, offers, and information from Encyclopaedia Britannica. Click here to view our Privacy Notice. Easy unsubscribe links are provided in every email.